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[1] The Transantarctic Mountains (TAM) define the
western flank of the West Antarctic rift system. Cape
Surprise, near the Shackleton Glacier in the central
TAM, is the only location along the range’s >3500 km
length where upper Paleozoic Beacon Supergroup
strata are down-faulted to near sea level. Previous
studies have inferred a range front master normal fault
accommodates extension and rock uplift across the
TAM front in this region. The history of rock uplift is
debated, suggested as early as Mesozoic, typically
Cenozoic, or even Pliocene or younger. Structural obser-
vations, apatite fission track (AFT) thermochronology,
and geomorphologic mapping undertaken within the
TAM front east of the Shackleton Glacier indicate
extension, faulting, and denudation was mostly late
Eocene–late Oligocene and likely into the early
Miocene. An exhumed AFT partial annealing zone is
found at the coast and traced >50 km inland. The base
of that exhumed partial annealing zone indicates
denudation accelerated at �40 Ma near the coast and
at 30–35 Ma on the inland side of the TAM front.
Vertically offset AFT isochrones across the TAM front
reveal a step-faulted architecture rather than a single
master fault. The cumulative vertical offset of the
55 Ma isochrone is 2.3–2.7 km, compared to 2.4–
2.6 km offset of Beacon strata, indicating that all
significant normal faulting is Cenozoic, and not related
to Mesozoic extension within the West Antarctic rift
system. Denudation from <26 Ma to �14 Ma
produced a locally preserved erosion surface within
the TAM front. Erosion surface remnants indicate the
TAM front has undergoneminimal internal deformation
and only 290–790 m of surface uplift along offshore
faults since the middle Miocene. Citation: Miller, S. R.,

P. G. Fitzgerald, and S. L. Baldwin (2010), Cenozoic range-front

faulting and development of the Transantarctic Mountains near

Cape Surprise, Antarctica: Thermochronologic and

geomorphologic constraints, Tectonics , 29 , TC1003,

doi:10.1029/2009TC002457.

1. Introduction

[2] With a total length of �3500 km and peak elevations
exceeding 4000 m, the Transantarctic Mountains (TAM) are
the highest and among the longest intracontinental exten-
sional mountain ranges in the world. The TAM have an
influential role in the Antarctic environment, including
effects on East Antarctic ice sheet dynamics [Huybrechts,
1993; Kerr and Huybrechts, 1999], yet their origin remains
debated and poorly understood [see Fitzgerald, 2002;
Bialas et al., 2007]. This mountain range formed along
the edge of the East Antarctic craton at its boundary with the
Mesozoic to recent West Antarctic rift system (WARS;
Figure 1) [e.g., Davey and Brancolini, 1995]. Given the
TAM’s general structure as a rift flank uplift, many pro-
posed explanations link uplift of the mountain range to
WARS extension [Fitzgerald et al., 1986; Stern and ten
Brink, 1989; van der Beek et al., 1994; Busetti et al., 1999;
van Wijk et al., 2008]. Other authors have suggested that
strike-slip faulting rather than normal faulting along the
range front permitted uplift of isostatically uncompensated
crust [ten Brink et al., 1997]. More recent numerical models
and studies of crustal thickness in the TAM have inferred
the mountain range is the elevated margin of a rifted,
collapsed Mesozoic continental plateau and thus largely
the remnant of preexisting high topography and thick crust
[Studinger et al., 2004; Karner et al., 2005; Bialas et al.,
2007]. Finally, flexural uplift models suggest �2 km of rock
uplift and significant peak uplift may be an isostatic
response to Cenozoic glacial erosion and thus not directly
tied to rifting [Stern et al., 2005].
[3] Because the WARS and the sedimentary record of

mountain building are largely covered by the Ross Sea, the
Ross Ice Shelf, and the West Antarctic ice sheet, low-
temperature thermochronology applied to the TAM has
constrained the cooling history and denudation record of
the TAM, and indirectly the tectonic history of the WARS.
A series of studies at different geographic locations along
the mountain range have applied apatite fission track (AFT)
[e.g., Gleadow and Fitzgerald, 1987; Fitzgerald and
Gleadow, 1988; Fitzgerald, 1992; Stump and Fitzgerald,
1992; Fitzgerald, 1994; Redfield, 1994; Balestrieri et al.,
1997; Fitzgerald and Stump, 1997; Lisker, 2002; Lisker et
al., 2006; Fitzgerald and Baldwin, 2007; Storti et al., 2008],
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Figure 1. (a) Geological map of the study area, showing major normal faults observed in the field by
offset strata [after La Prade, 1969; McGregor and Wade, 1969]. Locations of Figures 3, 7, and 9, and
cross section A-A0 in Figure 12 are marked. (b) Inset map of Antarctica showing location of study area,
near Shackleton Glacier, as well as sites of other studies and features mentioned in the text. AT, Adare
Trough; EB, Eastern Basin; MBL, Marie Byrd Land; RE, Ross Embayment; TAM, Transantarctic
Mountains; TR, Terror Rift; VLB, Victoria Land Basin; WARS, West Antarctic rift system. (c) Simplified
stratigraphic column of study area [after La Prade, 1969; Collinson and Elliot, 1984]. Ferrar Dolerite sills
are not shown.
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(U-Th)/He [Fitzgerald et al., 2006], and 40Ar/39Ar thermo-
chronology [Baldwin et al., 1999; Mortimer et al., 2002].
These studies document crustal cooling during the Jurassic
(165–150 Ma) [Fitzgerald and Baldwin, 2007], the Early
and Late Cretaceous (125–110 Ma and 100–85 Ma) [Stump
and Fitzgerald, 1992; Fitzgerald, 1994; Redfield, 1994;
Balestrieri et al., 1997; Fitzgerald and Stump, 1997], and
the Cenozoic [Gleadow and Fitzgerald, 1987; Fitzgerald
and Gleadow, 1988; Fitzgerald, 1992, 1994; Fitzgerald and
Stump, 1997; Rossetti et al., 2003]. Cenozoic cooling was
initiated from 55 to 45 Ma and associated with 4–9 km of
denudation along the mountain front, compared to 1–2 km
during the Cretaceous. Yet, no simple relationship exists
between Cenozoic denudation and Cenozoic extension in
the WARS, most of which occurred from 43 to 26 Ma
[Cande et al., 2000; Cande and Stock, 2006; Davey et al.,
2006] and from 17 Ma onward in the Victoria Land Basin
[Fielding et al., 2008]. One explanation largely decouples
tectonics and denudation, suggesting that Cretaceous exten-
sion may have caused faulting and generated relief in the
TAM but that denudation of the rift flank did not become
rapid until climate changed and/or barriers to sediment
transport were removed in the Eocene [Studinger et al.,
2004; Karner et al., 2005]. However, a key piece of
evidence for testing models of TAM formation, namely,
the timing of actual rift flank faulting, is rare. This fault
zone along the rift margin of the range is termed the TAM
front [Barrett, 1981]. Few constraints exist on faulting
across the TAM front except for offset rock of Paleozoic
and Jurassic age in the central TAM and southern Victoria
Land [Gunn and Warren, 1962; Barrett, 1965; Wilson,
1992, 1993], offset Cenozoic AFT isochrones in southern
Victoria Land and the Beardmore Glacier area [Fitzgerald,
1992, 1994], and dated pseudotachylites in northern Victoria
Land [Di Vincenzo et al., 2004].
[4] In contrast to nearly everywhere else in the TAM,

normal faults in the mountain front at Cape Surprise
(84�310S, 174�250W), near the Shackleton Glacier, can be
readily observed and their displacements relatively well
constrained (Figure 1). Cape Surprise is the only place
along the entire length of the mountain range where
Paleozoic strata are down-faulted from their typically high
elevations near the range crest to near sea level [Barrett,
1965]. The occurrence of Beacon strata at this location was
originally interpreted as evidence that the TAM front con-
sisted of a single, large-magnitude normal fault, named the
so-called ‘‘North Boundary fault,’’ with 3.1–5.2 km of
throw [Barrett, 1965; McGregor, 1965; La Prade, 1969].
Models for the uplift of the TAM that require a lithosphere
penetrating fault between East and West Antarctica have
used the North Boundary fault as the type example [Stern
and ten Brink, 1989; ten Brink et al., 1997]. Nevertheless,
little is known in detail about the structure of the Cape
Surprise region, when the TAM front faults there were
active, or its history of landscape evolution and denudation
tied to mountain building and climate change.
[5] This study was undertaken to determine the timing

and rate of denudation and deformation across the TAM
front, to assess if deformation was accommodated by one

large fault (i.e., the North Boundary fault) or a number of
smaller faults. Results of AFT thermochronology from
54 samples, including a structural transect and a series of
five near-vertical sampling profiles along with geologic
constraints, indicate the age and magnitude of fault dis-
placement in the TAM front. Identification of relict erosion
surfaces between the Shackleton and Liv glaciers (Figure 1a)
places additional limits on the pattern and history of late
Cenozoic faulting and surface uplift in the TAM front.

2. Tectonic Background of the West Antarctic

Rift System

[6] Extension in the WARS (Figure 1b) began in the
Jurassic, associated with widespread tholeiitic magmatism
at �180 Ma [Elliot, 1992; Elliot and Fleming, 2004] and
dike emplacement along the TAM [Wilson, 1993]. Since
rifting began, there has been �400 km of extension between
Marie Byrd Land in West Antarctica and the East Antarctic
craton [Fitzgerald et al., 1986; DiVenere et al., 1994;
Lawver and Gahagan, 1994; Davey and Brancolini, 1995;
Lawver and Gahagan, 1995]. Most of this extension
occurred 105–85 Ma [Lawver and Gahagan, 1994, 1995]
producing four major north–south trending elongate basins
in the Ross Sea [Cooper et al., 1991]. Initial extension,
probably focused in the eastern part of the rift system
[Luyendyk et al., 2003], was accommodated largely along
low-angle normal faults [Fitzgerald and Baldwin, 1997;
Luyendyk et al., 2001; Siddoway et al., 2004]. This was
followed by up to 150–170 km of extension between 43
and 26 Ma [Cande et al., 2000; Cande and Stock, 2006;
Davey et al., 2006] focused in the western Ross Sea
[Decesari et al., 2007a, 2007b]. Renewed extension within
the Terror Rift in the west began in the Miocene (�17 Ma)
[Fielding et al., 2008] and is ongoing, as indicated by active
volcanism and neotectonic faulting [Jones, 1997]. Although
the role of strike-slip faulting in Cenozoic extension within
the western Ross Sea is debated [see Storti et al., 2008],
strike-slip faulting in northern Victoria Land likely began
between 50 and 40 Ma and continued at least through 34 Ma
[Di Vincenzo et al., 2004; Rossetti et al., 2006].

3. Geology of the Shackleton Glacier Area

[7] Between the Shackleton and Liv glaciers the TAM
have an exposed width of �200 km (Figure 1). The
mountain range is characterized by a well-defined northern
margin along the Ross Ice Shelf, contrasting with a higher
elevation, southern or inboard margin consisting of mesas
and nunataks onlapped by the East Antarctic ice sheet
(Figure 2). The northern part coincides with the TAM front
and consists of a relatively low-relief piedmont �35 km
wide, with peaks generally <1600 m in elevation. This
piedmont abuts the prominent frontal escarpment of the
Prince Olav Mountains, which reach elevations >4000 m.
Bedrock ridges in the piedmont trend mostly north–south
and expose Cambro-Ordovician Queen Maud Batholith
granitoids and late Precambrian to Cambro-Ordovician
Ross Supergroup metamorphic rocks (Figure 1) [McGregor,
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1965; Borg, 1983; Stump, 1995] formed during the Ross
Orogeny in a continental arc setting [e.g., Stump, 1995;
Goodge et al., 2004a, 2004b; Paulsen et al., 2004]. The
Kukri erosion surface, a regionally extensive Devonian or
older unconformity, truncates the basement [Isbell, 1999]. In
the Prince Olav Mountains and at Cape Surprise, Carbonif-
erous(?)–Permian Beacon Supergroup strata, intruded by
Jurassic Ferrar Dolerite sills and dikes, unconformably
overlie the Kukri erosion surface [Barrett, 1965; La Prade,
1969; Barrett, 1991]. These units generally dip southward,
gently at Mount Munson and the Prince Olav Mountains
(2�–6�SW) but steeper at Cape Surprise (18�–35�SW)
likely due to fault block tilting. South of Cape Surprise, a

80 m thick dolerite sill intrudes basement rocks �760 m
below the Kukri erosion surface and dips �25�SW [Miller
et al., 2001]. We infer this basement sill is parallel to the
Kukri erosion surface, as commonly observed elsewhere in
the TAM [e.g., Hamilton et al., 1965; Fitzgerald, 1992].
Estimates of Beacon Supergroup thickness in the study area
range from >1430 m [La Prade, 1970] to 1720–1910 m
[Collinson and Elliot, 1984]. The Ferrar Dolerite is 1220–
1350 m thick [La Prade, 1969; D. Elliot, personal commu-
nication, 2009]. The stratigraphically highest unit, the
Jurassic Kirkpatrick Basalt crops out in the southernmost
part of the region in the Grosvenor Mountains where it is
430–610 m thick [La Prade, 1969; Barrett et al., 1986].

Figure 2. (a) Aerial photograph of the study area (U.S. Navy photograph, TMA 938, 75, F-33). Mount
Wade (4084 m) is the highest peak. (b) Digital elevation model (DEM) perspective of the study area,
viewed from the northwest, showing the dramatic contrast in elevations between the low-lying basement
foothills along the Ross Ice Shelf, the high-relief frontal escarpment of the Prince Olav Mountains, and
the Beacon-capped peaks and plateaus farther south. Scene created from the 200 m resolution Radarsat
Antarctic Mapping Project (RAMP) DEM [Liu et al., 2001]. Vertical exaggeration is 2�.
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These basalts appear to have been confined to a rift, so their
lateral extent is unclear [Elliot and Fleming, 2004]. The
total thickness of sedimentary, hypabyssal, and volcanic
rocks above the Kukri erosion surface is therefore 3080–
3870 m.
[8] In the Shackleton Glacier region, post-Mesozoic

faulting is documented where NW striking normal faults
and NE striking transfer faults offset Beacon strata and
Ferrar sills [Barrett, 1965; La Prade, 1969; Miller et al.,
2001]. The NW striking North Boundary fault places
Beacon strata in contact with basement granitoids; correla-
tive Beacon units in the Prince Olav Mountains lie 29 km
south and �2.5 km higher in elevation. Previous workers

hypothesized that the North Boundary fault is the range’s
master fault and has accommodated 3.1–5.2 km of total
throw since the Permian assuming footwall Beacon strata
dip uniformly 3�–5� south [Barrett, 1965; La Prade, 1969].
However, it is likely that fault(s) with significant throw exist
north of Cape Surprise of which the so-called North
Boundary fault is possibly just a subsidiary fault [McGregor,
1965]. Kinematic analysis on faults near Cape Surprise
indicate NNE extension (020�–040�) [Miller et al., 2001].
Inboard (south) of the TAM front and the Prince Olav
Mountains, four widely spaced range-parallel faults, includ-
ing theMount Rosenwald fault, have beenmapped (Figure 1)
[La Prade, 1969]. These faults strike NNW to NW and have
<150 m throw each. Suspected faults between Roberts
Massif and the northern side of Bennett Platform, also
contribute up to 800 m of down-to-the-north displacement
of middle to late Cenozoic(?) Sirius Group glacial sediments
[Hambrey et al., 2003]. A large fault is inferred to lie along
the Shackleton Glacier [Fitzgerald and Baldwin, 1997],
vertically displacing the Kukri erosion surface <500 m
[see La Prade, 1969] and separating basement with con-
trasting Sm–Nd model ages [Borg et al., 1990].

4. Thermochronologic Analysis and

Interpretation

[9] AFT thermochronology is a well-established method
commonly applied to constrain thermal and exhumation
histories of upper crustal rocks, notably in studies of
tectonic and landscape evolution [e.g., Gallagher et al.,
1998]. Fifty-four granitoid samples for AFT analysis were
collected from the Queen Maud Batholith along a 42 km
long transect between the Ross Ice Shelf coast at Cape
Surprise and the Prince Olav Mountains at Mount Wade
(Figure 3). Five near-vertical profiles were collected from
Mount Munson at the margin of the Prince Olav Mountains,
from Olds Peak in the middle of the transect, and near the
coast from Pyramid Peak (informal name for unnamed peak
at 84�3401200S, 174�5804800W), spot height 700 (84�3205200S,
174�470000W) and spot height 950 (84�330900S, 174�150200W).
Samples within vertical profiles were collected at 50–100 m
elevation intervals and, where feasible, parallel to any
known or suspected faults. Elevations were measured with
a calibrated pressure altimeter accurate to ±10 m. To
constrain the actual locations and displacements of faults
within the TAM front, vertical profiles and other samples
were collected across the structural trend of the range
[Fitzgerald, 1992; Foster and Gleadow, 1996]. Thermochro-
nology data are presented and interpreted for each sampling
profile, starting at Mount Munson and moving coastward
(Table 1).

4.1. Mount Munson

[10] This profile has the greatest relief (1435 m) of the
five near-vertical sections (Figure 4). The uppermost sample
was collected immediately beneath the Kukri erosion sur-
face and the lower part of the profile (<2000 m elevation)

Figure 3. Map showing AFT sample locations (circles),
rock outcrops (gray polygons), and select peaks (triangles).
Sample numbers, omitting SG prefix, are shown in boxes.
Thin dashed lines show locations of the cross section in
Figure 8b. Contour interval is 200 m.

TC1003 MILLER ET AL.: TECTONICS NEAR CAPE SURPRISE, ANTARCTICA

5 of 21

TC1003



Table 1. Apatite Fission Track Thermochronologic Sample Information and Results for Transect Between Cape Surprise and Mount

Wade, Shackleton Glacier Area, Central Transantarctic Mountainsa

Sample
Elevation

(m)
Number
of Grains

Track Density (�106 cm�2)
[U]

(ppm)
P(c2)
(%)

Central
Age ±1s
(Ma)

Relative
Error (%)

Confined Track
Lengths (mm) Dpar (mm)

Standard Fossil Induced Mean ± 1s s Mean s

Cape Surprise Vicinity
SG-6 370 25 1.590 0.745 4.014 32 <1 53 ± 3 18 13.8 ± 0.3 2.7 1.99 0.23

[5338] [991] [5341] [105] [21]
SG-18 595 20 1.668 1.811 9.342 70 3.5 58 ± 2 10 13.1 ± 0.3 2.9 2.07 0.29

[5338] [1700] [8767] [120] [24]
SG-19 340 25 1.679 0.515 3.316 25 14 47 ± 2 5 12.0 ± 0.3 3.6 1.93 0.23

[5338] [715] [4606] [120] [21]
SG-20 230 25 1.689 0.470 3.351 25 0.3 43 ± 3 18 13.4 ± 0.2 2.5 1.69 0.26

[5338] [720] [5132] [144] [27]
SG-21 405 25 1.700 0.378 3.383 25 21 35 ± 2 9 13.4 ± 0.2 2.4 1.59 0.16

[5338] [575] [5146] [102] [28]

Spot Height 950 Vertical Profile
SG-50 950 25 1.561 0.5224 2.828 23 0.1 53 ± 3 20 13.3 ± 0.2 2.4 2.00 0.23

[5061] [773] [4184] [102] [21]
SG-51 855 25 1.567 0.2536 1.698 14 66 42 ± 2 1 13.8 ± 0.2 2.0 1.81 0.17

[5061] [372] [2490] [100] [32]
SG-52 730 5 1.574 0.6073 4.814 38 79 36 ± 5 0 14.5 ± 0.3 1.2

[5061] [54] [428] [5]
SG-53 630 25 1.577 0.4843 3.952 31 16 35 ± 2 10 14.3 ± 0.1 1.5 1.68 0.18

[5061] [594] [4847] [125] [20]
SG-54 495 25 1.583 0.420 3.896 31 99 31 ± 2 0 14.4 ± 0.1 1.3 1.72 0.19

[5061] [519] [4814] [129] [23]
SG-55 400 25 1.589 0.5803 5.595 44 99 30 ± 1 0 14.5 ± 0.1 1.2 1.85 0.23

[5061] [757] [7299] [170] [21]

Spot Height 700 Vertical Profile
SG-8 700 25 1.601 0.8585 5.27 37 49 47 ± 2 2 13.1 ± 0.3 3.3 2.03 0.15

[5338] [1101] [6759] [110] [25]
SG-10 605 25 1.616 0.7032 4.850 38 9 42 ± 2 10 13.1 ± 0.2 2.4

[5338] [826] [5697] [120]
SG-11 495 25 1.627 0.5593 3.621 28 <0.1 45 ± 3 21 12.6 ± 0.3 2.8 1.91 0.23

[5338] [735] [4759] [110] [33]
SG-12 355 25 1.637 0.5224 3.491 24 77 45 ± 2 0.3 13.9 ± 0.2 2.1 1.59 0.17

[5338] [712] [4740] [111] [32]
SG-13 265 25 1.653 0.6721 4.919 37 <0.1 40 ± 3 23 13.6 ± 0.2 2.5 1.88 0.35

[5338] [711] [5204] [110] [25]
SG-14 185 25 1.658 0.4302 3.205 24 43 40 ± 3 6 13.7 ± 0.2 2.0 2.01 0.13

[5338] [593] [4418] [125] [28]
SG-2 140 25 1.58 0.4379 2.870 20 12 44 ± 2 4 13.8 ± 0.3 2.7 1.94 0.23

[5338] [673] [4410] [105] [21]

Between Spot Height 700 and Pyramid Peak
SG-9 655 25 1.611 0.1423 1.094 9 14 39 ± 3 21 13.4 ± 0.2 1.7 1.73 0.23

[5338] [208] [1599] [36] [21]
SG-48 370 25 1.555 0.6504 4.942 40 6 37 ± 2 10 13.8 ± 0.2 2.1 1.78 0.20

[5061] [954] [7248] [111] [25]
SG-44 370 25 1.542 0.7669 5.983 49 20 36 ± 1 8 13.3 ± 0.2 2.2 1.91 0.30

[5061] [1095] [8543] [100] [25]
SG-47 470 25 1.548 0.7798 6.407 52 52 34 ± 1 2 13.5 ± 0.2 2.2 1.93 0.25

[5061] [1164] [9564] [106] [25]

Pyramid Peak Vertical Profile
SG-37 780 25 1.681 1.033 8.729 65 75 36 ± 1 0.9 13.6 ± 0.1 1.5 2.01 0.24

[5344] [1522] [12860] [130] [23]
SG-38 660 25 1.691 1.297 10.05 74 <0.1 41 ± 2 13 13.7 ± 0.2 1.9 1.94 0.30

[5344] [1647] [12762] [137] [25]
SG-39 565 25 1.701 0.7233 6.184 45 75 36 ± 1 0.1 14.4 ± 0.2 1.6 2.07 0.21

[5344] [1089] [9311] [105] [28]
SG-40 460 25 1.517 0.3951 3.051 25 63 36 ± 2 2 14.4 ± 0.1 1.2 1.70 0.16

[5061] [538] [4154] [100] [28]
SG-41 365 25 1.523 0.360 3.350 28 4.9 30 ± 2 15 14.6 ± 0.1 1.1 1.64 0.17

[5061] [486] [4522] [102] [32]
SG-42 300 25 1.530 0.3463 3.297 27 97 29 ± 2 0.1 14.2 ± 0.1 1.1 2.07 0.23

[5061] [481] [4579] [100] [21]
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Table 1. (continued)

Sample
Elevation

(m)
Number
of Grains

Track Density (�106 cm�2)
[U]

(ppm)
P(c2)
(%)

Central
Age ±1s
(Ma)

Relative
Error (%)

Confined Track
Lengths (mm) Dpar (mm)

Standard Fossil Induced Mean ± 1s s Mean s

SG-43 255 25 1.536 0.3756 3.626 30 78 29 ± 1 0.4 14.3 ± 0.1 1.0
[5061] [506] [4886] [106]

Between Pyramid Peak and Olds Peak
SG-70 335 25 1.596 0.7256 6.788 53 53 31 ± 1 1.5 14.1 ± 0.2 1.9 2.00 0.21

[5061] [972] [9093] [145] [28]

Olds Peak Vertical Profile
SG-23 1480 25 1.586 0.643 4.585 36 1 41 ± 2 16 14.3 ± 0.1 1.5 2.26 0.18

[5344] [883] [6297] [110] [20]
SG-25 1385 25 1.596 0.5104 3.589 28 11 41 ± 2 9 14.0 ± 0.1 1.3 2.09 0.19

[5344] [795] [5591] [110] [23]
SG-26 1315 25 1.601 0.2927 2.183 17 92 39 ± 2 <0.1 13.7 ± 0.2 2.0

[5344] [462] [3445] [80]
SG-27 1240 25 1.616 0.7929 6.037 47 88 39 ± 1 <0.1 13.8 ± 0.2 1.9

[5344] [1091] [8306] [130]
SG-28 1115 25 1.621 0.7678 6.106 47 1 37 ± 2 14 13.6 ± 0.2 1.6 1.91 0.25

[5344] [875] [6959] [100] [25]
SG-29 1000 14 1.631 1.144 8.715 67 3 39 ± 3 17 13.6 ± 0.1 1.7

[5344] [490] [3733] [105]
SG-30 900 25 1.641 0.8845 6.954 53 52 38 ± 1 0.1 13.5 ± 0.1 1.7 2.19 0.24

[5344] [1372] [10787] [140] [23]
SG-31 800 25 1.651 0.9977 7.726 59 96 39 ± 1 <0.1 13.8 ± 0.1 1.4 2.58 0.25

[5344] [1286] [9958] [115] [25]
SG-32 695 25 1.666 1.477 12.12 91 0.1 37 ± 1 12 13.4 ± 0.1 1.7

[5344] [1998] [16389] [151]
SG-33 575 25 1.676 1.520 12.98 97 19 36 ± 1 4 13.6 ± 0.2 1.8 1.95 0.35

[5344] [1859] [15871] [130] [25]

Mount Munson Vertical Profile
SG-127 2615 15 1.410 3.688 12.17 108 10 77 ± 2 0.5 12.4 ± 0.2 2.7 2.36 0.28

[5065] [3447] [11376] [211] [22]
SG-128 2495 20 1.432 1.895 8.739 76 0.9 55 ± 2 10 12.0 ± 0.3 3.3 2.14 0.22

[5065] [2152] [9925] [160] [30]
SG-129 2395 20 1.453 3.094 13.04 112 26 62 ± 2 3 12.0 ± 0.2 2.6 2.28 0.32

[5065] [3574] [15059] [150] [28]
SG-130 2285 20 1.486 1.779 9.504 80 92 50 ± 2 <1 12.6 ± 0.2 2.7 2.25 0.22

[5065] [1706] [9116] [130] [30]
SG-131 2180 25 1.496 1.779 10.23 86 0 48 ± 2 13 12.6 ± 0.2 2.7 2.33 0.19

[5065] [2595] [14928] [150] [23]
SG-132 2055 20 1.518 1.977 14.63 121 50 37 ± 1 <0.1 12.9 ± 0.3 3.0

[5065] [1848] [13673] [120]
SG-133 1955 25 1.539 0.859 8.115 66 97 30 ± 1 0 14.6 ± 0.2 1.5 2.19 0.24

[5065] [1173] [11081] [105] [144]
SG-134 1860 25 1.561 0.5603 6.053 49 99 26 ± 1 0 14.0 ± 0.2 1.1 1.96 0.28

[5065] [664] [7173] [139] [22]
SG-135 1765 25 1.591 0.7719 7.523 59 94 30 ± 1 <0.1 14.4 ± 0.1 1.3

[5065] [1012] [9863] [110]
SG-136 1595 25 1.604 0.7458 7.578 59 100 29 ± 1 0 14.3 ± 0.1 1.1

[5065] [985] [10008] [115]
SG-137 1490 25 1.626 1.312 9.098 70 3 43 ± 2 11 12.6 ± 0.2 2.2 1.62 0.24

[5065] [1460] [10120] [110] [23]
SG-138 1340 25 1.658 0.737 5.511 42 0 41 ± 3 23 12.0 ± 0.2 2.1

[5065] [818] [6116] [110]
SG-139 1130 25 1.669 1.103 8.347 63 7 40 ± 2 11 13.0 ± 0.2 2.6 2.07 0.17

[5065] [918] [6945] [115] [32]

Mount Wade
SG-140 2000 25 1.690 0.5629 2.992 22 99 58 ± 3 0.01 12.8 ± 0.3 2.8 2.05 0.19

[5065] [719] [3822] [115] [23]
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crosses a number of small cols where crush zones of granite
and slickensided surfaces were observed. AFT ages range
from 77 ± 2 Ma (age errors quoted at 1s throughout the
text) for the uppermost sample to 26 ± 1 Ma (Table 1).
Above 2000 m elevation, the confined track length distri-
butions (CTLD) are left-skewed, indicating the presence of
short tracks (Figure 4). Overall, short mean lengths (12.0–
12.9 mm), large s (>2.6 mm), and a gentle slope on the age-
elevation plot (16 ± 2 m/Myr; error quoted at 2s level)
indicate considerable residence time in the apatite PAZ.
Between elevations of 2000 and 1500 m, the steeper age-
elevation relation and the CTLDs’ longer means (>14.0 mm),
smaller s (<1.5 mm), and weaker skewness indicate rela-
tively rapid cooling. The upper part of the profile represents
a classic exhumed PAZ [Fitzgerald and Gleadow, 1990]
with the break in slope marking the onset of ‘‘rapid’’
cooling between 37 and 30 Ma. It is difficult to more tightly
constrain the onset of more rapid cooling because SG-132
(37 ± 1 Ma) lies within, but near the base of, the exhumed
PAZ as indicated by the presence of shorter tracks whereas
SG-133 (30 ± 1 Ma) lies below the base of an exhumed
PAZ.
[11] The lowest three samples of the Munson profile have

ages and CTLDs similar to those within the exhumed PAZ.
Combined with observations of crush zones, altered granite,
and slickensides, we infer the age-elevation pattern is
disrupted by at least three faults with individual throws of
�700 m, �120 m, and �200 m down toward the coast.
Closer to the summit, between SG-128 and SG-129, there is
also a possible fault with 100–200 m throw, also down
toward the coast.
[12] For rapidly cooled samples below the break in slope,

a least squares regression through the age-elevation data
indicates an apparent denudation rate of �50 m/Myr.
Apparent denudation rates derived from age-elevation plots
can overestimate the true denudation rate due to advection
and topographic effects [e.g., Stüwe et al., 1994;Mancktelow
and Grasemann, 1997; Braun, 2002; Reiners et al., 2003].
However, for a topographic wavelength of �8 km, an
average along-strike value for the TAM front east of the
Shackleton Glacier (Figure 1), the topographic-advection
correction is small (�5%) and therefore ignored [Reiners et
al., 2003].
[13] Temperature-time paths for individual samples were

inverse modeled using AFTSolve [Ketcham et al., 2000]

using the annealing algorithm of Ketcham et al. [1999] for
comparison with our interpretations of age-elevation plots
and to better constrain the onset of rapid cooling. Therefore,
only samples older than the age of the break in slope were
modeled. Dpar, which is the maximum etch pit diameter
parallel to the c axis, age, and length data served as input
data (see Figure 5). The best fit modeled cooling envelope
indicates cooling rate increased from 0.7 to 0.8�C/Myr to
6–10�C/Myr at 30–35 Ma (Figure 5). This change is more
obvious in samples close to the age of the break in slope
because these contain a greater proportion of rapidly cooled
tracks. Interestingly, although the change in cooling rate is
obvious in an age-elevation plot, it is not obvious in the T-t
models for the higher elevation samples, lying a mere 300 m
or so above the break in slope, indicating one danger in
relying on models from single samples to constrain thermal
histories.

4.2. Olds Peak

[14] Samples from Olds Peak were collected nearly
parallel to the strike of the TAM front over an elevation
range of 905 m. AFT ages ranges from 41 ± 2 Ma at the
summit to 36 ± 1 Ma at glacier level (Figure 4). Both the
steep slope (�200 m/Myr) on an age-elevation plot of these
samples and weakly skewed CTLDs with long means
(>13.4 mm) and small s (<2.0 mm) suggest relatively rapid
cooling. Mean track lengths of the uppermost samples are
>14.0 mm and there is no obvious break in slope in the
profile, indicating rapid cooling began before �41 ± 2 Ma.
Mean track lengths decrease with decreasing elevation
suggesting that cooling may have slowed slightly by 36 Ma.

4.3. Pyramid Peak

[15] Samples on Pyramid Peak were collected down a
steep ridge oriented oblique to local faults. All samples have
apparent ages <41 Ma (Figure 6), with the youngest age of
29 ± 1 Ma coming from the lowest sample. Only the top two
samples, with mean lengths <13.7 mm and s > 1.5 mm,
show evidence for partial annealing. Lower elevation
samples have weakly skewed CTLDs with longer means
(>14.2 mm) and smaller s (<1.6 mm) indicative of rapid
cooling. For this profile, we therefore conclude rapid
cooling began between 41 and 36 Ma. No field evidence
for faults was observed. However, a slight kink at the base

Notes to Table 1:
aApatite grains were separated from their host rocks using conventional magnetic and heavy liquid techniques. Grains were mounted in epoxy on glass

slides, polished to expose internal surfaces, and etched in 5 M HNO3 to reveal fossil fission tracks. Prepared samples were irradiated in the Oregon State
University TRIGA reactor, in which neutron fluences were monitored using the Corning CN-5 uranium glass standard. Standard, fossil, and induced track
densities were measured for individual grains using the external detector method [e.g., Gleadow, 1981] with a Nikon Optiphot-2 transmitted and reflected
light petrographic microscope at 1250 � magnification under a dry 100 � objective, outfitted with a computer-controlled Kinetek stage operating with FT
Stage software by Dumitru [1993], a drawing tube, and digitizing tablet. Ages were calculated using the zeta calibration method [Hurford and Green,
1983]. Central ages are reported [Galbraith and Laslett, 1993]; analytical error reported at the 1s level; s, standard deviation; values in brackets are n,
number of tracks counted or measured. Relative error is a measure of the age dispersion of the single-grain ages combined within the sample age; low
relative errors (<10%) of the central age indicate individual grain ages are drawn from a single age population [Galbraith and Laslett, 1993]. The chi-square
(c2) test was used judge whether the ages of individual grains were drawn from a population with a Poisson distribution. For values of P(c2) � 5%, the test
fails to reject the hypothesis that the data do not differ significantly from a Poisson distribution. Horizontal, confined track length measurements were made
following the method outlined by Laslett et al. [1982] and Laslett et al. [1984]. Dpar is the diameter of fission track etch figures parallel to the c axis
[Burtner et al., 1994; Carlson et al., 1999; Ketcham et al., 1999].
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of the age-elevation plot could be the result of minor
down-to-the-south faulting or an increase in denudation
rate at �30 Ma.

4.4. Spot Height 700

[16] Samples on spot height 700 were collected down a
profile oriented slightly oblique to local faults. These

samples yield apparent ages �40 Ma and all CTLDs are
left-skewed with numerous short tracks (mean <13.9 mm
and s > 2.0 mm), indicating they likely reside in an
exhumed PAZ (Figure 6). The relatively steep slope of
the age-elevation plot may be the result of down-to-the-
northwest or down-to-the-northeast faulting within the pro-
file. A similar inferred fault lies in a gully just south of the
summit (Figure 7) and separates two samples at similar
elevations: a 39 Ma sample (SG-9) to the south from a
47 Ma sample (SG-8) to the north, consistent with down-to-
the-northeast faulting.

4.5. Spot Height 950

[17] Samples on spot height 950 were collected on a steep
topographic slope parallel to the strike of significant local
faults. The age-elevation profile, combined with CTLDs,
shows a break in slope and a transition from partially
annealed to rapidly cooled samples between 42 ± 2 Ma
and 36 ± 1 Ma (Figure 6). Above the break in slope, CTLDs
are left-skewed with short means (<13.8 mm) and large s
(>2.0 mm). Below the break in slope, longer mean track
lengths (>14.3 mm),smaller s (<1.5 mm), and minimal
skewness are consistent with faster cooling. A least squares
regression of sample elevation versus age below the break
in slope yields an apparent denudation rate of �70 m/Myr.
[18] Collectively, the three profiles closest to the coast

indicate that rapid cooling began there at �40 Ma. In the
middle of the TAM front, samples at Olds Peak were
cooling rapidly at �40 Ma but there is no indication of
exactly when the onset of rapid cooling was or if it is
distinguishable from the coastal profiles. In contrast, the
onset of rapid cooling at Mount Munson on the inland side
of the TAM front was between 35 and 30 Ma.

5. Occurrences and Characteristics of

Piedmont Erosion Surfaces

[19] The modern geomorphology of the TAM reflects
landscape evolution that postdates the AFT record. Between
the Prince Olav Mountains and Ross Ice Shelf, piedmont
summits and ridges rise steeply from adjacent valley gla-
ciers. In contrast with this steep topography are erosion or
planation surfaces [e.g., Burbank and Anderson, 2001] that
cap many piedmont ridges and summits (Figure 8a) or form
broad, flat valley floors slightly lower than adjacent sum-
mits (Figure 8b). For purposes of this study, we defined
erosion surfaces to be characterized by (1) low relief and
gentle slopes that stand in sharp contrast with surrounding,

Figure 4. Sample elevation versus AFT age plots for
vertical profiles on Mount Munson and Olds Peak with
selected confined track length distribution (CTLD) histo-
grams. Errors on AFT ages given at 2s level. Thick gray
lines mark general trends. CTLD statistics and scales
labeled for summit sample on Mount Munson: s, confined
track length standard deviation; n, number of track lengths
measured. Tectonostratigraphic columns for each profile
shown at right. See Figure 7 for key to lithologic symbols.
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steeper topography and (2) truncated sedimentary strata or
igneous intrusions. Nineteen erosion surfaces were mapped
in the field and with vertical and oblique aerial photographs
(Figure 9). In general, these erosion surfaces are <600 m
above modern glacier levels. Example topographic profiles
of these surfaces are shown in Figure 10. Individually, relict
erosion surfaces in the piedmont have slopes that range
from <1� to 15�, in sharp contrast with much steeper
subjacent slopes, which are >20� (Figure 10). These erosion
surfaces occur on all lithologies in the TAM front. At Cape
Surprise, erosion surfaces truncate Beacon beds and Ferrar
Dolerite sills and have a thin or absent mantle of frost-
shattered regolith. Elsewhere, regolith or till is thicker and
contains ice wedge polygons (Figure 8a). The surfaces are

generally <0.5 km2 in area, but several range from 5 to
10 km2. In total, recognized piedmont erosion surfaces
between the Shackleton and Liv glaciers cover an area of
46.7 km2.
[20] Viewed together, these piedmont erosion surfaces

have nearly accordant elevations and extend discontinuous-
ly from the base of the Prince Olav Mountains to the Ross
Ice Shelf (Figure 11). Mean elevations of individual surfa-
ces are shown in Figure 9 and range from 1410 m at the
base of the Prince Olav Mountains to 430–750 m along the
ice shelf. As a whole, these define an interpolated surface
that slopes �3� toward the Ross Ice Shelf (Figure 11).

6. Discussion

6.1. Thermochronologic Constraints on Faulting Across
the Transantarctic Mountains Front

[21] Paleozoic Beacon strata offset vertically between
Cape Surprise and the Prince Olav Mountains only very
broadly constrain potential fault locations and the history of
fault movement in the mostly granitic TAM front. More
detail of TAM front structure can be achieved with AFT
isochrones superimposed onto a cross section, where iso-
chrones offset vertically over short horizontal distances
indicate fault throw or block tilting [e.g., Fitzgerald,
1992; Foster and Gleadow, 1996]. To constrain vertical
offset with some confidence, we used only isochrones from
the exhumed PAZ, where there is significant age variation
with elevation [e.g., Fitzgerald, 1992]. To do this, we
identified the 40 and 50 Ma AFT isochrones between the
Prince Olav Mountains and Cape Surprise (Figure 12b). The
40 Ma isochrone, near the base of the exhumed PAZ,
provides the greatest detail across the entire TAM front
because older AFT ages are uncommon near the coast and
absent in the central portion of the TAM front (Figure 12a).
Significant discontinuities in the isochrones coinciding with
valleys or other topographic discontinuities were inter-
preted as faults. The interpreted composite cross section
in Figure 12b shows that the TAM front at this longitude,

Figure 5. Inverse model T-t histories for AFT samples on
Mount Munson, arranged according to sample elevation.
Thick line is the best fit; dark gray region is a good fit (i.e.,
supported by the data); light gray region is an acceptable fit
(i.e., not ruled out by the data). Thin dashed horizontal lines
represent paleo-PAZ; vertical line marks approximate onset
of rapid cooling. White circles on T-t paths mark each
sample’s central ages. Models were run with a starting track
length of 15.5 mm. For the Mount Munson profile, Dpar

varies from 1.62 to 2.36 mm with a mean of 2.13 mm. For
comparison, Dpar for the Durango apatite and Fish Canyon
Tuff age standards measured using these same etching
conditions was 2.02 and 2.35 mm, respectively. This
compares to 1.83 and 2.43 mm measured by Donelick et
al. [1999] using the etching conditions for which AFTSolve
is calibrated. The similarity of measurements, with one
slightly longer and one slightly shorter, meant that we did
not adjust our Dpar values for model input. No preset
cooling intervals were defined.
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inboard of Cape Surprise, consists of at least nine significant
normal faults spaced 1–10 km apart over a fault zone 20–
30 km wide. This result contrasts with earlier interpretations
of the TAM front at this location that assumed all throw was
across a single master fault [McGregor, 1965; La Prade,
1969]. However, the step-faulted structure of the TAM front
in the Shackleton Glacier area is similar to the in the Scott
Glacier region, Beardmore Glacier region, and southern
Victoria Land (Figure 1b) [Gunn and Warren, 1962; Barrett,
1965;Katz, 1982;Gleadow andFitzgerald, 1987;Fitzgerald,
1992, 1994; Fitzgerald and Stump, 1997].
[22] The offset isochrones show a large amount of fault

displacement is Cenozoic but alone they do not constrain
any earlier history of faulting. To estimate the amount of
pre-Cenozoic faulting, we compare total stratigraphic and
isochrone displacements across the TAM front. The 55 Ma
isochrone spans the greatest distance across the range front,
being present at both Mount Munson and just south of Cape
Surprise (near SG-6) in the footwall of the North Boundary
fault. This isochrone is vertically separated between these
two locations by 2095 ± 170 m. This confidence interval of
±170 m was determined by multiplying the age-elevation
slope of exhumed PAZ (16 ± 2 m/Myr; 2s) by the 2s error
on the AFT age and propagating errors.
[23] To constrain the total offset from Mount Munson to

Cape Surprise, we have to include throw across the North
Boundary fault. The North Boundary fault places the 55 Ma
isochrone, which is 120 ± 70 m below the Kukri erosion
surface on Mount Munson, in contact with the Fairchild
Formation, which is 140–378 m above the Kukri erosion
surface [Barrett, 1965; La Prade, 1969]. Throw on this
normal fault is therefore 200–600 m. Adding this figure to
the measured isochrone offset above, cumulative vertical
offset of the 55 Ma isochrone along this cross section,
corresponding approximately to C-C0 in Figure 12, is 2.3–
2.7 km. By comparison, cumulative stratigraphic offset
between Mount Munson and Cape Surprise is 2.4–2.6 km.
For these estimates, we assume that both the Kukri erosion
surface and isochrones in the exhumed PAZ were approx-
imately horizontal prior to faulting. Because offset of the
55 Ma isochrone is within error of 100% of the total
stratigraphic offset, we conclude that all offset postdates
55 Ma. Because the exhumed PAZ indicates a period of
relative thermal and tectonic stability, it is likely that all offset
actually postdates the onset of rapid cooling at �40 Ma.
[24] Evidence for Mesozoic extension has been reported

along the TAM, including the Beardmore Glacier region
[Wilson, 1992; Elliot and Larsen, 1993; Wilson, 1993] and
southern Victoria Land [Mortimer et al., 2002], but exten-
sion at that time appears minor and generally inland of the
TAM front, in the hinterland. Our AFT data indicate no
significant normal faulting occurred in the TAM front
between the late Paleozoic and the early Cenozoic. Therefore,
Mesozoic extension in the Shackleton Glacier area was either
confined to the hinterland or minor overall.

6.2. Estimates and Patterns of Denudation

[25] With a few reasonable assumptions, the paleodepth
of the base of an exhumed PAZ can be calculated and an

Figure 6. Graphs of sample elevation versus AFT age for
vertical profiles on Pyramid Peak, spot height 700, and spot
height 950. See Figure 4 caption for further details.
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estimate of the amount of denudation since the Eocene
determined. Following on from earlier studies in the TAM
that assume an Eocene geothermal gradient (20�–25�C/km),
a mean annual Eocene surface temperature (0�C), and a
temperature (110�C) for the base of the apatite PAZ [e.g.,
Fitzgerald, 1992, 1994], the exhumed PAZ was at a depth of
4.4–5.5 km at the onset of rapid cooling (�40 Ma).
Because the exhumed PAZ is �0.5 km above the mean
modern bedrock surface in the center of the study area near
Olds Peak and Mount Munson (Figure 12d), a maximum of

4.9–6.0 km of total denudation has occurred there since
�40 Ma. Denudation profiles across the TAM comparing
this thermochronologic estimate with a stratigraphic estimate
are shown in Figure 12c. This estimate of Cenozoic denu-
dation is comparable to elsewhere along the TAM, where it
ranges from 4 to 9 km [e.g., Fitzgerald, 1992, 1994;
Fitzgerald and Stump, 1997]. These thermochronologic
results are also consistent with local geologic constraints.
Considering that the base of the exhumed PAZ is 0.6–
0.7 km below the Kukri erosion surface on Mount Munson,

Figure 7. Geological map with shaded relief of the Cape Surprise area, showing locations of AFT
samples, their central ages, and local structure. Geology is after Barrett [1965], La Prade [1969], and
Miller et al. [2001]. Contour interval is 200 m.
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the Kukri erosion surface would have been 3.7–4.9 km
deep at the end of the Eocene based on assumed geothermal
and thermochronologic parameters. This compares closely
to the combined thickness of Beacon strata, Ferrar sills, and
Kirkpatrick flows (3.1–3.9 km), the overburden at the end
of the Jurassic assuming uniform thickness. These results
suggest minimal denudation during the Cretaceous. Sup-
porting this, 40Ar/39Ar analyses of K-feldspar from the
study area also indicate no significant cooling prior to the
Cenozoic [Baldwin et al., 1999]. The lack of detectable
Cretaceous denudation is consistent with evidence for no
significant normal faulting during this time.
[26] Interestingly, the onset of rapid cooling, determined

by the age of exhumed PAZ, gets younger landward, from
�40 Ma near Cape Surprise to 30–35 Ma at Mount
Munson. This younging trend may be the result of such
end-member scenarios as passive escarpment retreat or an
erosional front that tracked a landward migration in fault
activity and consequent local relief generation. Averaged

over the 5–10 Myr span, inferred lateral migration of the
cooling front occurred at a rate of 3–6 km/Myr, similar
to other estimated long-term rates of escarpment retreat of
1–7 km/Myr [Cole and Mayer, 1982; Ballantyne and
Kirkbride, 1987; Schmidt, 1988, 1989; Gilchrist and
Summerfield, 1990; Steckler and Omar, 1994; Gallagher
et al., 1995; Weissel and Seidl, 1997].

6.3. Origin of Piedmont Erosion Surfaces

[27] Erosion surfaces, broadly similar in elevation, mor-
phology, and lithology to those documented in the study
area, have also been identified in coastal southern Victoria
Land [Sugden et al., 1995; Sugden and Denton, 2004],
northern Victoria Land [van der Wateren et al., 1996], and
near the Nimrod Glacier in the central TAM (Figure 1b)
[Laird, 1963]. In the Shackleton Glacier region, but south of
the Prince Olav Mountains, Hambrey et al. [2003] identified
a surface between 1850 m and 2200 m elevation eroded into
Ferrar Dolerite on Bennett Platform and Roberts Massif
(Figure 1a), which they termed the ‘‘Shackleton erosion
surface.’’ These surfaces and others in West Antarctica have
been attributed to a variety of origins: marine abrasion
[LeMasurier and Landis, 1996; van der Wateren et al.,
1996; Wilson and Luyendyk, 2006], glacial erosion [Laird,
1963] or fluvial processes and slope wash [Denton et
al., 1993; Sugden et al., 1995; Sugden and Denton, 2004].
[28] Within our study area, piedmont erosion surfaces are

morphologically similar to pediments and cryopediments,
which typically slope <1�–12� from mountain fronts and
have lateral dimensions on the order of 1 or 10 km
[Priesnitz, 1988; Cooke et al., 1993]. Accordant surface
elevations suggest the piedmont erosion surfaces identified
across the TAM front represent vestiges of a former, more
continuous surface (a pediplain) that has been partially
destroyed by valley incision. Erosion surfaces in southern
Victoria Land are also interpreted as pediments or pedi-
plains [Denton et al., 1993; Sugden and Denton, 2004].
Formation of pediments, cryopediments, or larger pedi-
plains typically involves fluvial as well as slope processes
including slope wash or solifluction [Priesnitz, 1988; Cooke
et al., 1993], which is consistent with evidence for early
Cenozoic stream erosion in Antarctica [Baroni et al., 2005;
Jamieson et al., 2005]. We cannot rule out other possible
origins but we do note that the inferred original piedmont
erosion surface in our study area was much larger than
typical marine terraces [e.g., Anderson et al., 1999] and
strand flats [e.g., Benn and Evans, 1998] and is therefore
not likely of marine origin. Nor is it likely the result of
glacial erosion, which is not known to plane surfaces [Benn
and Evans, 1998].

6.4. Age of Piedmont Erosion Surfaces

[29] Age constraints on the piedmont erosion surfaces are
few, and reliable correlations with other erosion surfaces in
the TAM remain a challenge. The surfaces must postdate the
youngest AFT ages, so the surfaces are <26 Ma. Evidence
suggests that similar erosion surfaces and Antarctic land-
forms, in general, are quite old and undergoing very slow
erosion. For example, the Shackleton erosion surface

Figure 8. Photographs of piedmont erosion surfaces,
marked with arrows. (a) Flat summit of spot height 720 in
the Gabbro Hills (foreground) and undulating, low-relief
surface of Longhorn Spurs (background). View toward
west. (b) Broad flat surface of Mount Skinner (foreground)
and flat valley bottom in the Lillie Range (background).
View toward east.
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[Hambrey et al., 2003] is overlain by Sirius Group tillites
with surface exposure ages >10 Ma [Kurz and Ackert,
1997]. Bedrock erosion surfaces in the Dry Valleys sector of
southern Victoria Land have 21Ne minimum exposure ages
of 4–5 Ma and erosion rates <0.15 m/Myr [Summerfield et
al., 1999]. Well-dated glacial deposits in southern Victoria
Land and analyses of erosion on volcanoes in Marie Byrd
Land indicate little landscape modification in these regions
since �14 Ma [Marchant et al., 1996; Rocchi et al., 2006;
Lewis et al., 2007]. At �14 Ma, the Antarctic climate
became steadily frigid and therefore not conducive to much
erosion except locally by warm-based glaciers. Based on
these constraints, the piedmont planation surfaces in the
Shackleton Glacier region are inferred to be >14 Ma but

<26 Ma. Denudation rates may have had to increase from
50 to 200 m/Myr (between �40 and �30 Ma) to �250–
330 m/Myr (between �30 and �14 Ma) to exhume the
TAM front to the level of the erosion surface. These rates
seem reasonable compared to elsewhere in the TAM at this
time [Fitzgerald, 2002] and may leave enough time to create
planation surfaces, considering that lateral planation
required to produce pediments up to 50 km in length and
width can occur in as few as 1–2 Ma [e.g., Hall et al.,
2008]. If these surfaces did form, in part, due to fluvial
processes, then this suggests that fluvial erosion was active
in the TAM later than previously thought (>55–34 Ma)
[Jamieson and Sugden, 2008] and after the time (34 Ma)
when glaciers existed locally in the TAM [Naish et al.,

Figure 9. Map showing locations of piedmont erosion surfaces north of the Prince Olav Mountains,
excluding the Kurki erosion surface. Erosion surface mean elevations (m) in boxes. Elevation of basin
below Ross Ice Shelf, shown with a cross, from the Ross Ice Shelf Traverse, 1957–1958, as recorded on
U.S. Geological Survey Antarctic reconnaissance series map, Shackleton Glacier SW1-10/1. Contour
interval is 200 m. Locations of topographic profiles in Figures 10 and 11 are indicated.
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2001]. However, prior to maximum expansion of the East
Antarctic ice sheet in the Miocene [Passchier, 2004; Sugden
and Denton, 2004; Lewis et al., 2006, 2007], there is
evidence of warm interglacial periods when mean summer
temperatures reached �5�C [Ashworth and Kuschel, 2003].
It is reasonable that fluvial erosion could have occurred on
the piedmont during these interglacials, or even during
glacial periods if glaciers were restricted to higher elevation
areas such as in the Prince Olav Mountains.

6.5. Late Cenozoic Uplift and Deformation of Erosion
Surfaces

[30] Formation of an erosion surface, whether fluvial or
marine, requires a base level that is stable with respect to a
rock reference frame to which the surfaces are graded
[Burbank and Anderson, 2001]. Given the proximity of
these erosion surfaces to the coast, base level was likely sea

level, and hence their present elevations are a measure of
surface uplift since the time they formed minus sea level at
time of formation. Although eustatic sea level estimates for
much of the Cenozoic are debated [Miller et al., 2005;
Spasojević et al., 2008] they provide constraints. Given that
the surfaces formed between �26 and �14 Ma, and
accounting for eustasy during this period, when sea level
varied between �40 and +140 m relative to present-day
[Kominz, 1984; Haq et al., 1987; Kominz et al., 1998; Van
Sickel et al., 2004; Haq and Al-Qahtani, 2005], the 430–
750 m erosion surface elevations along the ice shelf coast
imply 290–790 m of surface uplift, probably on faults along
the margin of the modern ice shelf. With sea level being the
lowest elevation these surfaces could have formed at, this
range of values is the maximum likely amount of surface
uplift.
[31] The magnitude of surface uplift in the Shackleton

Glacier region since �14 Ma is similar to estimates of
surface uplift in Victoria Land. There estimates range from
<300 m since 2.6 Ma [Wilch et al., 1993] and 400–500 m
since 3–5 Ma [Wrenn and Webb, 1982] to �400 m since
11 Ma [Mortimer et al., 2007]. Cosmogenic nuclide data
indicate that surfaces have been close to their present
elevations since �3 Ma in southern Victoria Land [Brook
et al., 1995] and since >4 Ma in the Dominion Range of the
central TAM [Ackert and Kurz, 2004]. Notably, our results
contrast with estimates of 1–3 km of surface uplift in the
central TAM since the Pliocene [Webb et al., 1986; Behrendt
and Cooper, 1991; Webb et al., 1996; Wilson et al., 1998].
[32] The general accordance of erosion surfaces eleva-

tions between the Shackleton and Liv glaciers implies that
since formation, there has been little significant deformation
within the TAM front. This interpretation assumes that all
erosion surfaces were graded to the same base level and are
the same age. If this assumption is valid, the low elevation
of the erosion surface near spot height 720 (Figure 8),

Figure 10. Topographic profiles across Mount Skinner
from RAMP DEM, which has a 200 m cell size [Liu et al.,
2001]. Erosion surface on E-E0 slopes �3�NE and on D-D0

slopes �2�NW, compared to side slopes of �30�. E-E0

displaced 50 m higher for clarity. Vertical exaggeration is
10�. See Figure 9 for locations.

Figure 11. Topographic profiles of TAM front between Shackleton and Liv glaciers, oriented
approximately perpendicular to the range and each spaced �10–25 km apart. Piedmont erosion surfaces
are marked in gray. Exhumed Kukri erosion surface on Mount Hall is also visible. Vertical exaggeration
is 5�. Projected onto vertical plane striking 027� (at 175�W), approximately perpendicular to the
coastline. See Figure 9 for locations.
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southeast of Cape Surprise, is exceptional, possibly indicat-
ing �300 m vertical separation from adjacent surfaces in the
along-strike direction, probably across range-perpendicular
faults. Such faulting and block tilting is consistent with fault
kinematic data for ESE directed (�100�) extension across
NNE striking normal faults and may have given rise to

asymmetric drainage patterns in the TAM front [Miller et
al., 2001].

6.6. Implications for Formation of the Transantarctic
Mountains

[33] Thermochronology constrains cooling and hence
denudation, but not directly rock uplift or surface uplift

Figure 12
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[e.g., England and Molnar, 1990]. Evidence suggests,
however, that accelerated denudation in the Eocene was a
direct response to tectonics within the TAM front. Cenozoic
denudation in the Shackleton Glacier area, both in magni-
tude and location, is similar to elsewhere in the TAM,
focused within the TAM front and coastward of the topo-
graphic crest. Rapid Cenozoic denudation in the Shackleton
Glacier region began at �40 Ma, generally later than in
other segments of the TAM front but generally compatible
with a previously noted trend that youngs southward along
the range [Fitzgerald, 2002]. For instance, Cenozoic
denudation began in northern Victoria Land at �55 Ma
[Fitzgerald and Gleadow, 1988]; southern Victoria Land at
55 Ma [Gleadow and Fitzgerald, 1987; Fitzgerald, 1992];
the Beardmore Glacier region at 50 Ma [Fitzgerald, 1994];
and the Scott Glacier region at �45 Ma [Fitzgerald and
Stump, 1997] (Figure 1b). As in the Shackleton Glacier area,
Cenozoic denudation elsewhere in the TAM was associated
with faulting across the TAM front. Vertically offset 30–
35 Ma isochrones in both the Beardmore Glacier area
[Fitzgerald, 1994] and near Granite Harbour in southern
Victoria Land [Fitzgerald, 1992] show faulting in these
areas probably continued to at least 30 Ma.
[34] Overall, these results have bearings on the proposed

models for formation of the TAM, at least by providing
observations that these and future models must incorporate.
In the Shackleton Glacier area, normal faulting and denu-
dation coincided with the 150–170 km of extension in the
WARS between 43 and 26 Ma [Cande et al., 2000; Cande
and Stock, 2006; Davey et al., 2006]. This supports the rift
flank uplift model of the TAM, but does not explain the lack
of coincidence between extension and denudation in other
sectors of the range. Although there is evidence for dextral
transtension and strike-slip motions between East and West
Antarctica at this time [Wilson, 1995; Müller et al., 2007],
which has been suggested as a factor in Cenozoic uplift of
the TAM [ten Brink et al., 1997], NNE directed extension in
the TAM front near the Shackleton Glacier suggests almost
orthogonal extension [Miller et al., 2001]. The demonstrated
history of faulting in the TAM front is also inconsistent with

the hypothesis that most rock uplift in the TAM was
Cretaceous and associated with wide rifting in the WARS,
and that rapid denudation in the TAM front only began after
climate became more conducive to erosion or after the
WARS subsided below sea level [Karner et al., 2005]. As
we lack constraints on early Cenozoic land surface eleva-
tions, our results are consistent with both the hypothesis that
the TAM are a Cenozoic rift flank uplift [Fitzgerald et al.,
1986; Stern and ten Brink, 1989; van der Beek et al., 1994;
Busetti et al., 1999; van Wijk et al., 2008] and the hypoth-
esis that the TAM is a relict high-elevation margin of a
collapsed continental plateau [Bialas et al., 2007]. However,
with respect to plateau collapse, our results indicate that any
initial collapse and associated extension in the WARS
(�105–85 Ma) was not along the present-day TAM front.
Any of the most recent extension observed within the
WARS, such as in the Terror Rift [e.g., Fielding et al.,
2008], has not contributed to distributed faulting within the
TAM front in the Shackleton Glacier region and is possibly
only related to limited surface uplift. Finally, although
glacial erosion may have been significant in the TAM and
contributed to some isostatic uplift [Stern et al., 2005],
geomorphologic evidence in the TAM front suggests glacial
erosion might have largely postdated most TAM front
faulting. Based on the widespread occurrence of nonglacial
landforms in the TAM [e.g., Denton et al., 1993; Jamieson
and Sugden, 2008], the role of fluvial or mixed fluvioglacial
erosion may be greater than glacial erosion alone.

7. Conclusions

[35] The results of our study refine the history of faulting
in the TAM front, linking it directly to Cenozoic denudation
in the TAM front and extension in the WARS. Furthermore,
our study demonstrates the utility of combining thermo-
chronologic, geologic, and geomorphologic data in order to
provide a complete picture of deformation and landscape
evolution in an extensional mountain range. AFT thermo-
chronology combined with stratigraphic constraints indicate
that no significant normal faulting occurred across the TAM

Figure 12. Thermochronologic and structural summary diagram. (a) Central ages (squares) and errors (±2s) plotted above
corresponding sample locations (circles) in Figure 12b. (b) Composite cross section of the TAM front, showing AFT sample
locations, the 40 and 50 Ma isochrones, the projected Kukri erosion surface, and faults (dashed where inferred). The
vertical distance of the Kurki erosion surface above the isochrones is known directly on Mount Munson and Mount Wade.
Error (2s) on elevation of isochrone at sample locations is approximately the thickness of the isochrone line. Possible faults
near spot height 700 are not shown for clarity. Dip of the Kukri erosion surface is not well constrained between Mount
Munson and Cape Surprise but is �3�SW in the Prince Olav Mountains and �35�SWat the coast [Barrett, 1965; La Prade,
1969]. Note that structural geometries are distorted by vertical exaggeration (4�). Cross sections B-B0 and C-C0 are located
in Figure 3. Structures observed in C-C0 do not necessarily project to B-B0, particularly near Cape Surprise where mapped
transfer faults occur between them. (c) Estimated Cenozoic denudation profile. See text for details. (d) Cross section of the
TAM, from the East Antarctic Ice Sheet to the Ross Ice Shelf. Location is shown in Figure 1. Geology and observed faults
are from La Prade [1969]; inferred faults are from cross section in Figure 12b. Only rift-parallel faults are shown (thick
black lines). Gray silhouette in the background marks the envelope of maximum topographic elevations between
Shackleton and Liv glaciers. Ice thickness based on the work by Drewry [1972]. The cross section crosses the Shackleton
Glacier, SG, which overlies a suspected fault (not shown). Envelope indicating top of the Jurassic is based on regional
stratigraphic measurements. Mean bedrock elevation (dashed gray line) is based on 50 km wide swath along A-A0,
extending from its east side, calculated from BEDMAP, which has a 5 km cell size [Lythe et al., 2000]. Vertical
exaggeration is 5�.
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front on the east side of the Shackleton Glacier from the late
Paleozoic to 40 Ma, despite Jurassic and Cretaceous exten-
sion within the adjacent WARS. This conclusion is based
on the similar magnitudes of vertical offset of Beacon
Supergroup strata down-faulted at Cape Surprise and
cumulative offset on AFT isochrones. Mesozoic denudation
was negligible. The vertically offset AFT isochrones show
that extension is distributed across the TAM front by slip on
multiple identifiable normal faults spaced over 20–30 km
rather than on one master fault as previously proposed.
[36] Much of the presently exposed TAM front resided

within an apatite PAZ until rapid denudation began near the
Ross Ice Shelf coast at �40 Ma, when denudation rates
increased from <35 to 50–200 m/Myr, persisting until
�26 Ma. Denudation at Mount Munson, near the inland
margin of the TAM front, began later at 30–35 Ma,
indicating more distributed faulting in the TAM front or
simply passive escarpment retreat. Since �40 Ma there has
been as much as 4.9–6.0 km of denudation over the TAM
front.
[37] From <26 Ma to �14 Ma a low-relief erosion

surface formed across the TAM front. This erosion surface,
since incised by the modern network of valley glaciers, is
evident today in scattered relict surfaces. The lower limit of
�14 Ma for these erosion surfaces is based on similarities

with better dated landforms in southern Victoria Land and
Marie Byrd Land. Erosion surfaces show no significant
deformation across range-parallel faults in the TAM front
and constrain most fault activity within the TAM front to the
period of �40–14 Ma. Since formation of the erosion
surfaces, there has probably been minor throw on faults
that strike perpendicular to the range and greater throw
across one or more range-parallel faults near the margin of
the Ross Ice Shelf. Slip along this inferred coastal fault or
fault zone has resulted in no more than 370–790 m of rock
and surface uplift in the TAM front since �14 Ma. Further
research on the chronology of late Cenozoic landscape
evolution in the TAM, such as erosion surfaces, will
advance our understanding of this mountain range’s forma-
tion and its coupling with the adjacent rift system.
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